
SPECTRA OF RANDOM NON-ABELIAN REAL-VALUED

G-CIRCULANT MATRICES

MAXIM GERSPACH

Abstract. We analyze the limiting eigenvalue and singular value law for convolution operators

on large, not necessarily Abelian, groups in the case of real-valued Gaussian entries, providing an

analogue of a result of R. Adamczak, where purely complex-valued entries (i.e. with uncorrelated

real and imaginary part) where considered.

It turns out that the spectral behaviour depends on the Frobenius-Schur-indicators of the ir-

reducible representations of the group, and splits up into a real, complex and quaternionic part,

which is reflected in the limiting law that is related to the real, complex and quaternionic Plancherel

measures of the groups.

We compare this to certain F×p -circulant matrices with deterministic (pseudo-random) entries

coming from Number Theory, and find a very different behaviour.

1. Introduction and Preparations

As in [Ada17], let G be a finite group and for a function X : G → C, consider the convolution
operator PX : CG → CG given by

(PXv)(h) := (X ∗ v)(h) :=
∑
g∈G

Xhg−1v(g)

for v ∈ CG and h ∈ G. In the following, we will mainly consider the case where X = (Xg)g∈G
denote i.i.d. real-valued random variables with EXg = 0 and EX2

g = 1, and most importantly,
when they are standard real-valued Gaussian random variables.

We recall some standard facts from representation theory of finite groups.
For a finite group G, denote by Ĝ the collection of irreducible representations of G, which we

may assume to be unitary. It is well-known that∑
Λ∈Ĝ

(dim Λ)2 = |G|.

We can then define the (normed) measure µG on N given by

µG(n) := µG({n}) :=
n2

|G|
|{Λ ∈ Ĝ : dim Λ = n}|,

which we will call the Plancherel measure of G and when convenient, we will view it as a measure
on the one-point compactification N = N ∪∞.
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Next, we define the Frobenius-Schur indicator ι(Λ) of an irreducible representation Λ with char-
acter χ by

ι(Λ) :=
1

|G|
∑
g∈G

χ(g2).

It is a well-known fact that

ι(Λ) =


1 if Λ is real,

0 if Λ is complex,

−1 if Λ is quaternionic.

We remark that a real representation is a representation that can be realised over the real numbers, a
complex representation is a representation whose character is complex (so that it automatically can
only be realised over the complex numbers) and a quaternionic representation is a representation
whose character is real but which can only be realised over the complex numbers. Note that a
quaternionic representation necessarily has even dimensions and consists of 2×2 blocks of the form

(1)

(
λ µ

−µ λ

)
for some λ, µ ∈ C. We can identify such a matrix with a quaternion q ∈ H via q = λ+jµ and remark
that matrix multiplication corresponds to quaternion multiplication under this identification.

We can then define the real Plancherel measure µRG of G by

µRG(n) =
n2

|G|
|{Λ ∈ Ĝ : dim Λ = n, ι(Λ) = 1}|

and similarly µCG and µHG.
Since we will view representations over different fields (namely, the real numbers, the complex

numbers and the quaternions) depending on context, we introduce the following notation. For clari-
fication, we sometimes write dimC Λ instead of dim Λ to point out that we view it as a representation
over the complex numbers. Then,

• for a real representation, we set dimR Λ = dimC Λ = dimH Λ,
• for a complex representation, we set 2 dimR Λ = dimC Λ = dimH Λ and
• for a quaternionic representation, we set 4 dimR Λ = 2 dimC Λ = dimH Λ.

Next, let N (µ,Σ) denote the Gaussian distribution with mean µ ∈ Rd and covariance matrix
Σ ∈ Rd×d. In the following, by a real Ginibre ensemble (of dimension d) we mean a random matrix

X ∈ Rd×d with i.i.d. real-valued entries and distribution N (0, 1
d), so that

√
dX has i.i.d. standard

Gaussian entries. A complex Ginibre ensemble (of dimension d) is a random matrix X ∈ Cd×d
having i.i.d. complex-valued entries with distribution N (0, 1

2dI2) (viewed as random variables in

R2 by looking at real and imaginary part). A quaternionic Ginibre ensemble (of dimension 2d) is
a random matrix X ∈ Hd×d with i.i.d. quaternion-valued entries and distribution N (0, 1

4dI4). We

will in most cases however view it as a random matrix in C2d×2d where in each 2 × 2 block we
identify a quaternion with a 2 × 2 complex matrix as in (1). This will in particular apply when
studiying spectral distributions.
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For a matrix A ∈ Cd×d, we define its eigenvalue measure LA by

LA :=
1

d

d∑
i=1

δλi ,

where λ1, . . . , λd are the eigenvalues of A counting algebraic multiplicity and where δz denotes the
Dirac measure on z ∈ C. We define the singular measure of A by L√AA∗ , where A∗ denotes the
conjugate transpose of A. If A is a random matrix, LA and L√AA∗ become random probability
measures and we call them the eigenvalue resp. singular value distributions.

We now define θRd (resp. θCd , θ
H
d ) and ρRd (resp. ρCd , ρ

H
d ) to be the eigenvalue and singular value

distributions of the real (resp. complex, quaternionic) Ginibre ensemble. Here, we view the 2d-
dimensional quaternionic Ginibre ensemble inside C2d×2d.

2. Eigenvalue distribution of Gaussian G-circulant matrices

The main goal of this section is to prove the following analogue of [Ada17, Proposition 3.3].

Theorem 1. Let G be a finite group and let X = (Xg)g∈G be a family of i.i.d. standard real-
valued Gaussian random variables. Let also (ΓΛ)Λ∈Ĝ be a family of independent Ginibre ensembles,
where ΓΛ is a real (resp. complex, quaternionic) Ginibre ensemble of dimension dim Λ when Λ is a
real (resp. complex, quaternionic) representation. Then L 1√

|G|
PX

has the same distribution as the

random measure ∑
Λ∈Ĝ

µG(Λ)LΓΛ

and L 1√
|G|

√
PXP

∗
X

has the same distribution as the random measure

∑
Λ∈Ĝ

µG(Λ)L√ΓΛΓ∗Λ
.

The main tool we will use to prove this Theorem is an analogue of [Ada17, Lemma 3.5].

Lemma 2. Let X = (Xg)g∈G be independent real-valued random variables such that for each g ∈ G,
EXg = 0 and EX2

g = 1. Consider the |G| random variables consisting of

• X̂(Λ)ij , i, j = 1, . . . ,dimR Λ for real irreducible representations Λ of G,

• RX̂(Λ)ij , IX̂(Λ)ij , i, j = 1, . . . ,dimC Λ, ranging over the complex irreducible representa-
tions of G, but out of an irreducible representation and its complex conjugate we pick only
precisely one. Note that the complex conjugate of a complex irreducible representation is
again a complex irreducible representation and moreover non-equivalent to the initital rep-
resentation;
• RX̂(Λ)ij , IX̂(Λ)ij ,J X̂(Λ)ij ,KX̂(Λ)ij , i, j = 1, . . . ,dimH Λ ranging over all quaternionic

representations Λ viewed as matrices with quaternionic entries in the usual way. This is
equivalent to taking the real and imaginary parts of the entries X̂(Λ)ij of all quaternionic
representations viewed as complex matrices, where i ranges only over odd indices.
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These random variables are pairwise uncorrelated, and if X̂ denotes an arbitrary random variable
of this collection, associated to a representation Λ, then we have

EX̂ = 0, EX̂2 =
|G|

dimR Λ
.

Note that dimR Λ can be interpreted as the dimension of Λ over the real numbers in a quite
rigorous sense. More prescisely, it is well-known (see [JL01, chapter 23], in particular Proposition
23.6) that

• an irreducible representation over C with Frobenius-Schur indicator 1 stays irreducible over
R,
• an irreducible representation Λ over C of dimension d with Frobenius-Schur indicator 0

can be naturally identified with an irreducible representation over C of dimension 2d. Two
representations Λ1,Λ2 identify with the same representation iff they are either equal or
conjugate (up to equivalence);
• an irreducible representation over C of (complex) dimension 2d with Frobenius-Schur indi-

cator −1 can be naturally identified with an irreducible representation over R of dimension
4d. The resulting representations coincide iff the initial representations coincide (up to
equivalence).

The proof of Lemma 2 makes heavy use of what is sometimes referred to as the Great Orthogo-
nality Theorem. A reference for this is [Dia88, Chapter 2B, Corollary 2,3].

Lemma 3. Let G be a finite group, and let Λ1, . . . ,Λr be a complete list of its irreducible repre-
sentations, which we may further assume to be unitary. Then for any m,n = 1, . . . , r and indices
i, j = 1, . . . ,dim Λm as well as k, l = 1, . . . ,dim Λn, we have

(2)
∑
g∈G

Λm(g)ijΛn(g)kl =
|G|

dim Λm
δmnδikδjl.

Note that for the right-hand side to be non-zero we must have dim Λm = dim Λn, so the statement
is symmetric.

Proof of Lemma 2. Firstly, it is immediate from the definitions that all the random variables have
zero expectation.

Let Λ1,Λ2 be any irreducible (unitary) representations of G. Noting that

RzRw =
1

2
R[(z + z)w]

for z, w ∈ C, we obtain

E
[
RX̂(Λ1)ijRX̂(Λ2)kl

]
=

1

2
RE

∑
g∈G

Xg

(
Λ1(g)ij + Λ1(g)ij

)∑
g∈G

XgΛ2(g)kl


=

|G|
2 dim Λ1

δΛ1Λ2δikδjl +
1

2

∑
g∈G

Λ1(g)ijΛ2(g)kl,(3)
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where in the last step we have applied Lemma 3, and where δΛ1Λ2 is 1 if the representations are
equal (as opposed to equivalent) and 0 if they are non-equivalent. Similar arguments imply

E
[
RX̂(Λ1)ijIX̂(Λ2)kl

]
= 0(4)

and

E
[
IX̂(Λ1)ijIX̂(Λ2)kl

]
=

|G|
2 dim Λ

δΛ1Λ2δikδjl −
1

2

∑
g∈G

Λ1(g)ijΛ2(g)kl.(5)

Note that we can not infer anything from Lemma 3 when the representations are equivalent, but
not equal; hence, we can not directly apply them to Λ1 and Λ2 to get an analogous expression for
the second part (at least not in the quaternionic case).

Equations (3), (4) and (5) in fact imply the claim. Suppose first that Λ1 and Λ2 are irreducible
unitary representations such that neither Λ1 and Λ2 nor Λ1 and Λ2 are equivalent. Then we may
invoke Lemma 3, applied to Λ1 and Λ2 to deduce that any two random variables that are associated
to the respective representations must be uncorrelated. This settles in particular the case when the
representations have different Frobenius-Schur indicators.

Now, suppose that both representations are real. If they are not equal then we may assume them
to be non-equivalent so that automatically, Λ1 and Λ2 are also non-equivalent and we land in the
first case. Thus, suppose that Λ := Λ1 = Λ2 = Λ2, so that (3) together with Lemma 3 implies

E
[
X̂(Λ)ijX̂(Λ)kl

]
=
|G|

dim Λ
δikδjl,

which settles this case.
Next, let Λ1 and Λ2 be complex representations. Note that a complex representation is not

equivalent to its complex conjugate, so that we may again apply Lemma 3, which gives us∑
g∈G

Λ1(g)ijΛ2(g)kl =
|G|

dim Λ1
δΛ1Λ2

δikδjl.

But from our choice of random variables we may assume Λ1 and Λ2 to be non-equivalent, so that
the latter expression evaluates to 0. One verifies that this together with (3), (4) and (5) implies
this part of the claim.

Lastly, suppose that Λ1 and Λ2 are quaternionic representations. Since a quaternionic represen-
tation is equivalent, but not equal to its complex conjugate, we may assume Λ := Λ1 = Λ2, but
we can not directly apply Lemma 3. However, when viewed as matrices with complex entries, we
know that Λ consists of 2× 2 blocks of the form (1), so that we have

Λ(g)kl = ±Λ(g)k+1,l±1

depending on whether l is odd or even (and making use of the fact that we may assume k to be
odd). Hence, we infer ∑

g∈G
Λ1(g)ijΛ2(g)kl = ±

∑
g∈G

Λ1(g)ijΛ2(g)k+1,l±1 = 0

by Lemma 3, noting that i and k+ 1 can never coincide because the first one is odd and the second
one is even. One verifies that this concludes the proof. �
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Proof of Theorem 1. We have already verified in Lemma 2 that the random variables of interest
(listed in the Lemma) are pairwise uncorrelated and have the correct expectation and variance. It
remains to show their joint independence in view of [Ada17, Corollary 3.2]. But we are now in the
Gaussian case, and here it suffices to show that the random variables listed in Lemma 2 are jointly
Gaussian to deduce the joint independence (from pairwise uncorrelatedness). But this is clear since
the collection is just a linear transformation of the (jointly Gaussian) random variables (Xg)g∈G,
and the determinant of the transformation matrix A is given by∏

Λ∈Ĝ

(
|G|

dimR Λ

)(dimC Λ)2

.

This can be verified quickly by checking that
√
AA∗ is a diagonal matrix with the corresponding

values on the diagonal (as a consequence of Lemma 2). �

3. Real Eigenvalues

Note that the complex as well as the quaternionic Ginibre ensemble almost surely possess no
real eigenvalues, while for the real Ginibre ensemble, we have the following fact from [EKS94].

Theorem 4. Let En denote the expected number of real eigenvalues of the real n × n Ginibre
ensemble. Then we have

lim
n→∞

En√
n

=

√
2

π
.

More precisely, if n is even,

En =
√

2

n/2−1∑
k=0

(4k − 1)!!

(4k)!!

while for n odd,

En = 1 +
√

2

(n−1)/2−1∑
k=0

(4k − 3)!!

(4k − 2)!!
.

Hence, we obtain the following

Corollary 5. Let G be a finite group, let (Xg)g∈G be a family of i.i.d. standard Gaussian random

variables and let E denote the expected number of real eigenvalues of 1√
|G|
PX . Then we have

E =
∑
Λ∈Ĝ
ι(Λ)=1

(dim Λ)Edim Λ.

Proof. Invoking Theorem 1, we have already remarked that only the real Ginibre ensembles con-
tribute to real eigenvalues. Now [Ada17, Proposition 3.1] tells us that the eigenvalues of each ΓΛ

appear in 1√
|G|
PX with multiplicity dim Λ. This gives the claim. �
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There are many examples of sequences of finite groups where we can study the asymptotic
behaviour of the expected number of real eigenvalues.

Suppose for example that GN = SN are the symmetric groups. The irreducible representations
of the symmetric groups are all real and their dimensions correspond to the hook numbers hλ
associated to the partitions λ of N . Denoting the expected number of real eigenvalues of 1√

|SN |
PX

by EN , we have

EN =
∑
λaN

hλEhλ ∼
∑
λaN

h
3/2
λ

using the first part of Theorem 4. An application of [VK85, Theorem 1] quickly yields the existence
of an explicit constant c > 0 such that

e−c
√
N (N !)3/4 � EN � ec

√
N (N !)3/4

(c = 3 works). In particular, the proportion of real eigenvalues decays essentially like |GN |−1/4

(and since we will later prove convergence of the eigenvalue distribution to the circular law, it has
to decay).

Next, let GN = DihN be the dihedral groups (so that GN has 2N elements). All irreducible
representations are real, of which O(1) have dimension 1 and N/2 + O(1) have dimension 2 (one
could easily be more precise here). With the notation from before, we obtain

EN = 2
√

2
N

2
+O(1) =

√
2N +O(1).

Thus, the proportion of real eigenvalues converges to
√

2/2.

4. Limiting Eigenvalue and Singular Value Distribution

We have the following analogue of [Ada17, Theorem 1.10].

Theorem 6. Let GN be a sequence of finite groups with |GN | → ∞. Assume that the real, complex
and quaternionic Plancherel measures µRN , µ

C
N and µHN converge weakly to measures µR, µC and µH

on N such that their sum defines a probability measure. For each N , let XN = (XN
g )g∈G be i.i.d.

standard real Gaussian random variables. Then the empirical spectral measure LeN of the matrix
1√
|GN |

PXN converges weakly in probability to the deterministic measure Le∞ on C with density

dLe∞(z)

dz
=
∑
n∈N

(
µR(n)

dθRn (z)

dz
+ µC(n)

dθCn (z)

dz
+ µH(n)

dθHn (z)

dz

)
.

Proof. The proof proceeds in almost exactly the same way as the proof of [Ada17, Theorem 1.10].
The only difference is that one has to treat all three cases, and then triangle inequality gives the
claim. �

Next, we claim an analogue of [Ada17, Theorem 1.5].

Theorem 7. Let GN be a sequence of finite groups with |GN | → ∞, and suppose that the sequences
of Plancherel measures µRN , µ

C
N and µHN converge weakly to measure µR, µC and µH on N such that

their sum defines a probability measure. For each N , let XN = (XN
g )g∈GN be i.i.d. copies of a
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real-valued random variable ξ with Eξ = 0 and Eξ2 = 1. Then the singular value distributions of
1√
|GN |

PXN converge weakly in probability to the deterministic measure Ls∞ on R+ with density

(6)
dLs∞(x)

dx
=
∑
n∈N

µR(n)
dρRn(x)

dx
+
∑
n∈N

µC(n)
dρCn(x)

dx
+
∑
n∈N

µH(n)
dρHn (x)

dx
.

Proof. The proof of this statement also proceeds in a very similar way as in the complex case.
While the real representation theory is slightly more difficult than the complex one, there are some
tiny simplifications in this part of the proof, essentially because we do not have to consider ξ over
R2, so that objects such as its covariance matrix become simpler. On the other hand, because
the random variables in Lemma 2 have a more complicated structure, we have to be a little more
careful in some details

We will not go through every part of the proof step by step, but will highlight the changes that
have to be made in order to adapt it to this case. We only give a complete proof of the following
Lemma, which contains the most significant changes.

Lemma 8. Fix a positive integer n. Let GN be a sequence of finite groups with |GN | → ∞, and let
ΛN ,∆N be two irreducible unitary representations of GN of dimension at most n, neither equal nor
complex conjugates of each other. Let also f : R+ → R be a bounded continuous function. Then as
N →∞ we have the convergence

(7)

∣∣∣∣∣E
∫
R+

fdL 1√
|GN |

√
X̂N (ΛN )X̂N (ΛN )∗

− E
∫
R+

fdL√
ΓΛN

Γ∗ΛN

∣∣∣∣∣→ 0

and

(8) Cov

(∫
R+

fdL 1√
|GN |

√
X̂N (ΛN )X̂N (ΛN )∗

,

∫
R+

fdL 1√
|GN |

√
X̂N (∆N )X̂N (∆N )∗

)
→ 0.

Proof. Since n is fixed, by splitting GN into a finite number of subsequences, we can assume that
dim ΛN = k, dim ∆N = l and that both representations have constant Frobenius-Schur indicators.
Consider the couple of random matrices

ZN :=

(
1√
|GN |

X̂N (ΛN ),
1√
|GN |

X̂N (∆N )

)
as a random vector in Rβ(ΛN )k2+β(∆N )l2 , where β(Λ) = 1 when Λ is real, and β(Λ) = 2 when Λ is
complex or quaternionic. The components of ZN listed in Lemma 2 corresponding to ΛN and ∆N

are uncorrelated and have variance 1
dimR(ΛN ) and 1

dimR(∆N ) (by the Lemma). Again, since ΛN (g)

and ∆N (g) are unitary, they are bounded independently of N and the Lindeberg condition for
the corresponding components of 1√

|GN |

∑
g∈GN X

N
g (ΛN (g),∆N (g)) is trivially satisfied. Hence,

these components converge in distribution to the same components of (Γ(1),Γ(2)), where Γ(i) are
independent Ginibre ensembles of the same size and type as ΛN resp. ∆N (viewed as real random

vectors). However, this implies the convergence in distribution of ZN to (Γ(1),Γ(2)): In the real
and complex case, this is a void statement because in Lemma 2 we take all components; in the
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quaternionic case, this is essentially claiming that if YN is a random complex vector such that
YN → Y in distribution then (YN ,±YN )→ (Y,±Y ) in distribution (where the sign is independent

of N), which is an immediate consequence of the Cramér-Wold Theorem. Also note that (Γ(1),Γ(2))
has the same distribution as (ΓΛN ,Γ∆N

). Now, consider the map

A 7→
∫
R+

fdL√AA∗ .

For fixed f as above, this is also bounded continuous (bounded by ‖f‖∞ and continuous in the

entries of A), and hence we obtain (7) by applying the convergence in distribution to 1√
|GN |

X̂N (ΛN ).

The remainder proceeds in exactly the same way as in [Ada17, Lemma 4.1], noting that the map

(A,B) 7→
∫
R+

fdL√AA∗

∫
R+

fdL√BB∗

is also bounded continuous and therefore we have

E

[∫
R+

fdL 1√
|GN |

√
X̂N (ΛN )X̂N (ΛN )∗

∫
R+

fdL 1√
|GN |

√
X̂N (∆N )X̂N (∆N )∗

]

→ E
[∫

R+

fdL√
Γ(1)(Γ(1))∗

∫
R+

fdL√
Γ(2)(Γ(2))∗

]
= E

∫
R+

fdL√
Γ(1)(Γ(1))∗

E
∫
R+

fdL√
Γ(2)(Γ(2))∗

,

which gives (8). �

Next, [Ada17, Lemma 4.2] proceeds in almost exactly the same way, the only difference is that
the random variables (Y N

g )g∈GN should of course also be real-valued i.i.d. standard Gaussian (and

thus we do not need to conjugate XN
g or Y N

g ).
Similarly, the concentration of measure argument works without changes and we obtain [Ada17,

Proposition 4.6]:

Proposition 9. In the situation of Theorem 7, assume additionally that ξ is bounded. Let ΛN be
a sequence of irreducible representations of GN with dN := dim ΛN → ∞ as N → ∞. Then for
any positive integer k we have

1

dN
tr

(
1

|GN |
X̂N (ΛN )X̂N (ΛN )∗

)k
→
∫ ∞

0
x2kdρ∞(x).

In particular, L
1√
|GN |

√
X̂N (ΛN )X̂N (ΛN )∗

converges weakly in probability to ρ∞.

Note that even though the statement is precisely the same, there is slightly more behind this
version. The important point is that, as usual, ΛN can have one of the three diffferent types, but
we have ρ∞ := ρC∞ = ρR∞ = ρH∞. We can thus subpartition the representations into those having
constant type, and then the result follows by noting that

1

n
E tr(ΓnΓ∗n)k →

∫ ∞
0

x2kdρ∞(x)

as n→∞, where Γn denotes an n-dimensional Ginibre ensemble of any (say fixed) type.
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Removing the boundedness assumption of ξ to obtain [Ada17, Proposition 4.7] also goes through
without difficulty, in fact it simplifies because the covariance matrix of ξ reduces to a scalar given
by the variance of ξ.

Lastly, the conclusion of the proof of Theorem 7 is a fairly straight-forward analogue of the
proof for [Ada17, Theorem 1.5]. One additionally needs to split up the error terms into parts
corresponding to real, complex and quaternionic Plancherel measures as before, using triangle
inequality.

The other difference is that in Lemma 8, we had the additional assumption that the representa-
tions are not conjugates of each other (which is only relevant in the complex case). Thus, we only
get the seemingly weaker estimate

max
Λ 6=∆,∆∈ĜN

dim Λ,dim ∆≤n0

Cov

(∫
R+

fdL 1√
|GN |

√
X̂N (Λ)X̂N (Λ)∗

,

∫
R+

fdL 1√
|GN |

√
X̂N (∆)X̂N (∆)∗

)
→ 0

asN →∞ instead of [Ada17, (4.12)]. However, for any representation Λ the measures L 1√
|GN |

√
X̂N (Λ)X̂N (Λ)∗

and L 1√
|GN |

√
X̂N (Λ)X̂N (Λ)∗

coincide, so that it nonetheless suffices to show that

Var
( ∑

Λ∈ĜN
dim Λ≤n0

µGN (Λ)

∫
R+

fdL 1√
|GN |

√
X̂N (Λ)X̂N (Λ)∗

)
→ 0,

as is proved there. Hence, we obtain the claim.
�

5. Eigenvalue Distribution of a Pseudorandom G-Circulant

Let p denote a prime, Fp the field of cardinality p and F×p its multiplicative group. For a, b ∈ F×p ,
we define the Kloosterman sum

Kp(a, b) :=
1
√
p

∑
x∈F×p

e

(
ax+ bx

p

)
,

where x denotes the inverse of x in F×p and e(z) := e2πiz. It is an elementary verification that
Kp(a, b) ∈ R. While of course being a deterministic object, this has pseudorandom properties in
the following sense (see [Kat88, 13.5.3]).

Theorem 10. Consider the sequence of random variables (Kp)p prime, given by

(a, b) 7→ Kp(a, b)

on the finite probability space F×p × F×p with the uniform probability measure. Then as p→∞, we

have convergence in distribution of Kp
d→ K, where K is a random variable distributed according

to the Sato-Tate law µST , given by the density

dµST (x)

dx
=

1

π

√
1− x2

4

for x ∈ [−2, 2].
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Next, define what we call the circulant Kloosterman operator, given by the matrix K̃p :=
( 1√

pKp(a, b))a,b∈F×p . One quickly verifies that this is indeed a circulant matrix for the group F×p . It

has deterministic entries for every p, but they are pseudorandom and Sato-Tate distributed (before
the additional normalization with 1/

√
p) in the above sense. Thus, it is an interesting question

how the eigenvalue and singular value distributions of K̃p look like; in fact, this is not a very hard
problem:

Proposition 11. As p → ∞, the eigenvalue distribution of K̃p converges weakly to the uniform
distribution on the complex unit circle.

Proof. Let χ be a character of F×p , i.e. a homomorphism F×p → C×. Note that this is the same as

an irreducible representation of F×p , and in particular (since the group is Abelian), there are p− 1
characters. If χ = χ0 ≡ 1 is the trivial character, it is immediate that

K̃pχ0 =
1

p
χ0,

so that χ0 is an eigenfunction of K̃p with eigenvalue 1
p . Now, suppose that χ is a non-trivial

character, recall that the Gauss sum τ(χ) associated to a character χ is given by

τ(χ) =
∑
a∈F×p

χ(a)e

(
a

p

)
and that for a non-trivial character we have |τ(χ)| = √p. Moreover, for such a character and any
n ∈ F×p , we have the equality ∑

a∈F×p

χ(a)e

(
an

p

)
= χ(n)τ(χ).

Noting that χ(m) = χ(m), we obtain

(K̃pχ)(n) =
1
√
p

∑
m∈F×p

Kp(n,m)χ(m) =
1

p

∑
x∈F×p

e

(
nx

p

) ∑
m∈F×p

e

(
mx

p

)
χ(m)

=
τ(χ)

p

∑
x∈F×p

e

(
nx

p

)
χ(x) =

τ(χ)2

p
χ(n).

Hence, any non-trivial character χ is also an eigenfunction of K̃p with eigenvalue τ(χ)2

p . We have

already remarked that these quantities have norm one, and moreover they equidistribute on the
complex unit circle by [Kat88, 9.3]. Since the characters form an orthonormal basis of Cp−1, this
gives the claim. �

Note that the normalization is the same as the usual one by 1√
dim

up to a negligent factor, but

we have chosen 1√
p because it is more convenient for the computation.

What is remarkable about this Proposition is that the behaviour of the eigenvalues in the pseu-
dorandom case here is entirely different from the one for F×p -circulant matrices with independent
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Sato-Tate distributed random variables. In that case, [Mec12, Theorem 4.1] tells us that the limit-
ing eigenvalue distribution is given by a complex standard Gaussian, because almost all characters
are complex.

We can also consider the Birch sums

Bp(a) :=
1
√
p

∑
x∈Fp

e

(
ax+ x3

p

)
and from this define what we will call the circulant Birch operator, B̃p := ( 1√

pBp(ab))a,b∈F×p . The

Birch sums satisfiy a very similar pseudorandomness property to the Kloosterman sums:

Theorem 12. For p prime, consider the random variable a 7→ Bp(a) on the finite probability space
F×p with the uniform probability measure. Then as p → ∞, we have convergence in distribution
Bp → B, where B is again distributed according to the Sato-Tate law.

However, the eigenvalues of B̃p satisfy a slightly different law than for K̃p:

Proposition 13. The eigenvalue distribution of B̃p satisfies the following properties.

(i) In the limit p→∞ ranging over p ≡ 2 (3), the eigenvalue distribution of B̃p converges weakly
to the uniform distribution U(S1) on the complex unit circle.

(ii) For p→∞ ranging over p ≡ 1 (3), the eigenvalue distribution of B̃p converges weakly to

2

3
δ0 +

1

3
U(S1) ∗ U(S1) ∗ U(S1),

where δ0 denotes the Dirac measure at 0 and ∗ is the convolution of probability measures
corresponding to the distribution of the sum of independent random variables.

Proof. Let χ be a multiplicative character. Then we have

(B̃pχ)(n) =
1
√
p

∑
m∈F×p

Bp(nm)χ(m) =
1

p

∑
m∈F×p

∑
x∈Fp

e

(
nmx+ x3

p

)
χ(m)

=
1

p

∑
x∈Fp

e

(
x3

p

) ∑
m∈F×p

e

(
nmx

p

)
χ(m) =

χ(n)τ(χ)

p

∑
x∈Fp

e

(
x3

p

)
χ(x).

Hence, any multiplicative character χ is an eigenfunction of B̃p with eigenvalue

λχ =
τ(χ)

p

∑
x∈Fp

e

(
x3

p

)
χ(x).

Now, suppose first that p ≡ 2 (3). Then x 7→ x3 defines a bijection on Fp (and on F×p ). Thus, we

have an inverse map denoted by x 7→ x1/3, and the same holds for the character group since it is
(non-canonically) isomorphic to F×p . Thus, we can write

λχ =
τ(χ)

p

∑
x∈Fp

e

(
x

p

)
χ(x1/3) =

τ(χ)τ(χ1/3)

p
.



SPECTRA OF RANDOM NON-ABELIAN REAL-VALUED G-CIRCULANT MATRICES 13

Next, we claim that in the case p ≡ 1 (3), the eigenvalue λχ vanishes when χ is not the cube of
another character (which holds for two thirds of the characters). To see this, let χ be non-trivial
and note that we have

λχ =
τ(χ)

p

∑
x∈Fp

e

(
x3

p

)
χ(x) =

τ(χ)

p

∑
y,z∈Fp

e

(
y

p

)
χ(z)

1

p− 1

∑
χ′

χ′(yz3)

=
τ(χ)

p(p− 1)

∑
χ′

τ(χ′)
∑
z∈Fp

χχ′3(z).

But the inner sum vanishes when χχ′3 is non-trivial, hence the claim follows (note that χ is a cube
iff χ is). �

6. Examples

We start by studying the case where GN is a sequence of Abelian groups such that |GN | → ∞ to
recover the corresponding result in [Mec12]. Note that all irreducible representations of an abelian
group are one-dimensional and thus either real or complex (but not quaternionic), so that µRN (1) is

the proportion of real characters of GN , µCN (1) is the proportion of complex characters of GN and
the assumption that the Plancherel measures should converge weakly transforms to the assumption
that the proportion of real characters pN of GN should converge to some value p. Since θR1 is the
standard real Gaussian distribution with measure denoted by γR, and θC1 is the standard complex
Gaussian distribution with measure denoted by γC, we obtain the limiting law

(1− p)γC + pγR

as in [Mec12, Theorem 4.1].
Now, suppose that GN = SN are the symmetric groups. We have already noted that all rep-

resentations are real, and it is well-known that µRN converges weakly to the Dirac measure at ∞.

Thus, we obtain the limiting eigenvalue distribution with density θR∞, which is the circular law.
Next, let Gq = GL(2, q), indexed by prime powers. It is well-known that there are precisely

q2 − 1 irreducible representations, and one verifies that none of them are quaternionic, O(q) are
real and the rest are complex. Moreover, there are O(q) representations of dimension 1 while the
rest has dimension at least q − 1. Hence, µCN converges weakly to the Dirac measure at infinity,

so that we obtain the limiting eigenvalue distribution with density θC∞, which is again the circular
law.

Let Q be the quaternion group, and let GN = Q × (Z/NZ). The irreducible representations of
a product of groups coincide with the tensor products of irreducible representations of the groups,
and the characters of the product are the products of the characters. Now the characters of Q are
real, while almost all characters of Z/NZ are complex, so that the characters of the product are
almost all complex. Moreover, we have µRQ(1) = µHQ(2) = 1

2 and thus we obtain the limiting spectral
distribution

Le∞ =
1

2
θC1 +

1

2
θC2 .
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Consider this time the sequence of groups GN = Q×(Z/2Z)N . Note that if G,H are finite groups
and Λ1,Λ2 are irreducible representations of G resp. H, then we have

ι(Λ1 ⊗ Λ2) = ι(Λ1)ι(Λ2),

and one quickly infers the limiting eigenvalue distribution

Le∞ =
1

2
θR1 +

1

2
θH2 .

Lastly, let G be any non-Abelian group, and set GN := GN . One verifies easily that the
Plancherel measure of GN converges weakly to the Dirac measure at infinity. Moreover, it is
not hard to see that the real, complex and quaternionic Plancherel measure all weakly converge
(even though we do not believe this to be necessary when the limit measure is the Dirac measure at
infinity). Since the limiting eigenvalue distributions of all Ginibre ensemble converge to the circular
laws as the dimension increases, the limiting eigenvalue distribution of GN is also the circular law.
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